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Transverse jets and jet flames. Part 1.
Scaling laws for strong transverse jets
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(Received 15 March 2000 and in revised form 13 September 2000)

We present a similarity analysis of strong turbulent jets directed perpendicularly into
a crossflow. The analysis neglects pressure terms in the governing equations, and
assumes complete similarity in each of two intermediate-asymptotic regions of the
flow: a jet region, where the jet is largely unaffected by the crossflow, and a wake-like
region, where the jet has been deflected well into the crossflow. Scaling laws are derived
for velocity, scalar concentration, and jet trajectory, and show good agreement with
existing experimental data. The structure of the counter-rotating vortex pair implied
by this analysis is significantly different from typical representations found in the
literature.

1. Introduction
The turbulent transverse jet is a simple flow configuration wherein a jet of fluid

issues perpendicular to a uniform crossflow. It is found in a wide variety of indus-
trial and aerospace applications, such as industrial burners, pipe tee mixers, flare
stacks, and vertical take-off/landing aircraft. However, when engineers design sys-
tems incorporating transverse jets, they do so without the benefit of a theoretical and
experimental knowledge base akin to that existing for free and coflowing jets, namely:
(i) a similarity theory, (ii) a corresponding set of scaling laws for velocity and scalar
averages/fluctuations, and (iii) experimentally determined profiles and coefficients.
This paper is an attempt to remedy these shortcomings in our understanding of
transverse jets.

To this end, Part 1 of this paper presents a similarity theory, which is essentially
a synthesis of transverse jet scaling ideas of Broadwell & Breidenthal (1984) and
intermediate asymptotics theory of Barenblatt & Zel’dovich (1972) and Barenblatt
(1996). The results are compared to recently reported data for the mixture fraction
field and previous work on the velocity field. Implications for the structure of the
vorticity field are also considered. Part 2 (Hassebrink & Mungal 2001) presents new
particle image velocimetry data, which verifies the scalings presented in Part 1, and
also considers the modification of the flow field due to combustion heat release. It also
provides a glimpse of flow complexities not accessible by a simple scaling law theory.

2. Previous work
2.1. Vorticity field structure

The transverse jet has become an example of turbulent flow composed of ‘coherent
structures’ – dominant vortical systems, which have offered the hope of a mechanistic,
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Figure 1. Features of the transverse jet, adapted from Margason (1993). The jet is characterized by
a jet shear layer, a horseshoe vortex system, ‘wake’ vortices, and a dominant counter-rotating vortex
pair. Only a cross-section of the wake vortices is shown at the wall, but they extend horizontally
from the wall into the vortex pair.

rather than statistical, understanding of turbulence. There are four main transverse jet
vortical systems, as described in detail by Fric & Roshko (1994), and these are shown
schematically in figure 1, adapted from Margason (1993). The jet initially issues in
the +x-direction, into a crossflow in the +y-direction. The jet is characterized by the
jet shear layer observed in free jets, and three additional unsteady vortical systems:
a ‘horseshoe’ or ‘necklace’ vortex, a street of ‘wake vortices’, and a ‘counter-rotating
vortex pair’ (CVP), which has received the majority of the research attention.

The structure of the CVP is a possible source of confusion. Despite the ‘classical’
portrayal of the CVP in figure 1, it is generally agreed that the CVP is not simply
a pair of vortex tubes which extend from the jet nozzle into the crossflow (i.e. with
a local flux-averaged vorticity vector which is approximately parallel to the local
jet trajectory). This view of the CVP is merely a simplified interpretation of time-
averaged data obtained in the CVP cross-section (Scorer 1958; Kamotani & Greber
1972; Fearn & Weston 1974), and a useful modelling tool. A more sophisticated view
was originally suggested by Moussa, Trischka & Eskinazi (1977), who studied the
roll-up of vorticity at the jet shear layer, and identified it as the primary source of
vorticity in the CVP. In analysing the convective acceleration equation of a vortex
ring shedding from the nozzle, they noted:

In time, the ring will be swept with the fluid, decelerating on the windward side
faster than at the centre and accelerating relatively on the lee side. This situation will
persist with diminishing intensity during the entire development of the deflected jet as
it asymptotically approaches a Beltrami flow . . .

In other words, rings rotate towards the crossflow as they are swept away by it. Several
investigations (Coelho & Hunt 1989; Andreopoulos & Rodi 1985; Sykes, Lewellen
& Parker 1986; Broadwell & Breidenthal 1984; Fric & Roshko 1994; Kelso, Lim &
Perry 1996) present measurements, calculations, and analysis supporting this general
conclusion. The effect is seen in the vortex lines plotted in the computation by Sykes et
al. (1986), in flow visualization of pulsed transverse jets (Eroglu & Breidenthal 1991),
and in an experiment where individual vortex rings were injected into a crossflow



Transverse jets and jet flames. Part 1 3

(Chang & Vakili 1995). In § 5 we too will show, through consideration of the first
moment of the vorticity, that this behaviour can be interpreted as a simple result of
momentum conservation. Furthermore, the angle of inclination towards the crossflow
(in the limit of ideal point-vortex cores) must be constant throughout the CVP.

Detailed velocity and vorticity field measurements in the CVP cross-section have
been performed by several investigators (Kamotani & Greber 1972; Fearn & Weston
1974; Moussa et al. 1977; Kuzo 1995) for jets with blowing ratios as high as r = 20.
Measurements of the velocity field in the symmetry plane have also been performed
by several previous studies (Patrick 1967; Chassaing et al. 1974; Andreopoulos &
Rodi 1985; Kelso et al. 1996; Gogineni, Goss & Roquemore 1995). However, only
the results of Patrick (1967) present detailed velocity fields for r > 8. Other studies
(Coelho & Hunt 1989; Kelso et al. 1996) address the details of the streamline topology
near the jet nozzle. The data set in the present work complements previous velocity
field measurements by providing symmetry-plane data for r = 10 and r = 21.

2.2. Jet trajectory

The arc subtended in space by the centre streamline of a transverse jet is a fundamental
characteristic of interest. However, data on transverse jet trajectories show significant
scatter, partly due to differing definitions of the jet centreline, partly from differing
experimental apparatus, and partly from differing opinions on the best form of the
correlating equation. Margason (1968) reviewed several published correlations, and
concluded that much of the data could be collapsed by normalizing coordinates with
the product rd, leading to a simple power-law trajectory:

y

rd
= A

( x
rd

)B
. (2.1)

Here A is a constant, approximately equal to 1.6, B is a constant, approximately 1/3,
and r is a flow parameter called the blowing ratio, usually taken as

r =

(
ρju

2
j

ρ∞v2∞

)1/2

, (2.2)

where subscript j denotes properties at the jet nozzle and subscript ∞ those in
the undisturbed crossflow. An extensive table of experimental values for A and B
(although cast in another form) are reported in Margason (1993). An oft-cited result
is A = 2.05, B = 0.28 (Pratte & Baines 1967); however, values are reported in the
literature in the range 1.2 < A < 2.6, and 0.28 < B < 0.34, indicating considerable
scatter in the values of the coefficients.

Some of the scatter stems from the determination of uj , which is a spatial variable
at the jet exit. The numerator in (2.2) is best defined in terms of an integral conserved
quantity, e.g. such as the average momentum flux per unit area of the jet, J/Aj , which
is equal to the numerator only in the case of perfectly uniform jet exit velocity.

Another source of scatter in the data can be explained by the discovery by Kamotani
& Greber (1972) that the trajectory of maximum velocity penetrates further into the
crossflow than the trajectory based on maximum concentration. Furthermore, their
results show A to be a function of r; e.g. when their trajectories are cast in the more
general form

y

rd
= ArC

( x
rd

)B
, (2.3)



4 E. F. Hasselbrink Jr and M. G. Mungal

they find C = 0.30. Similar results were also found by Smith & Mungal (1998), who
obtained extensive scalar concentration data for jets with 5 < r < 25.

Equation (2.1), with B = 1/3, is the trajectory correlation obtained in the self-
similarity analysis by Broadwell & Breidenthal (1984). The data supporting (2.3)
would therefore seem to imply that similarity assumptions are not valid. In the
present work, we will demonstrate that the assumptions leading to the trajectory
given in (2.1) require that r � 1.

2.3. Analytical approaches

The analytical portion of the present work is similar to the work of Broadwell &
Breidenthal (1984). There, the observation is made that in the very far field (where
the jet is almost completely deflected into the crossflow), the jet essentially becomes
a counter-rotating vortex pair, translating in the crossflow. By noting that turbulent
vortex pairs have a characteristic width proportional to wall-normal distance, they
derive far-field scaling laws for characteristic quantities of interest. The present
work arrives at the same conclusions for the very far field by different means, but
also provides suggestions for the behaviour closer to the jet nozzle. We note that
Abramovich (1963) assumes that jet width is proportional to jet arc length (as
opposed to wall-normal distance), which matches the data in the slightly deflected
region reasonably well, but poorly matches the far-field data, where the jet is nearly
parallel to the crossflow.

There are also several analyses in the literature which obtain closure by incorpor-
ating some assumption about the jet entrainment rate. Hoult & Weil (1972) deal with
the more general problem of buoyant turbulent jets, and assume that entrainment rate
is proportional to the local shear velocity (with differing coefficients for buoyancy-
driven and momentum-driven shear). They predict the existence of critical buoyancy
and momentum length scales, where the plume trajectory transitions to different
power-law scaling; the theory is shown to match the accumulated data. Another
entrainment analysis is presented by Keffer & Baines (1963). However, they identify
the outer momentum length scale as r2d, and a later study by Pratte & Baines (1967),
with extensive supporting data, finds it to be rd.

Another interesting theoretical approach has been to consider the kinematics of
the vorticity field. The near field of strong jets has been studied by Coelho & Hunt
(1989), who perform a perturbation analysis on the annular vortex sheet issuing from
the nozzle into a crosswind. They conclude that the sheet deforms three-dimensionally
in response to the pressure field, but does not deflect in the crossflow. They propose
that jet deflection is caused by entrainment into the sheet, and demonstrate that the
sheet does indeed deflect once entrainment is added to the model. Another kinematic
model by Karagozian (1986) considers the motion of a quasi-two-dimensional vortex
pair which issues from the jet nozzle and interacts with the crosswind. The analysis
has been used to predict flame lengths (Karagozian & Nguyen 1986) as well as the
jet width and trajectory, with reasonable agreement to data.

3. Similarity analysis
3.1. Conservation equations applied to the transverse jet

The first step is to identify the invariants of the flow, by applying conservation
equations to a control volume such as that shown in figure 2. The distance along
the centreline trajectory is denoted by s; each point along s is uniquely mapped to a
coordinate position (xc, yc). The velocity field u has components u, v and w; in this
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Figure 2. Control-volume for analysis of transverse jets. The origin of coordinates x, y and s is at
the centre of the jet exit. As denotes the cross-sectional area at a distance s along the trajectory;
dAn denotes a unit-area outward normal vector.

analysis we are primarily concerned with velocity components u and v. We assume
for the moment that the velocity field is approximately parallel to s in regions near
the centreline.

With these approximations, it is possible to express the mass flux, x-momentum
flux, and y-momentum deficit through the cross-section at a given distance x from
the nozzle, using As to denote the cross-section area as, respectively,

ṁ(s) =

∫
As

ρ
√

(u2 + v2) dAs, (3.1)

J(s) =

∫
As

ρu
√

(u2 + v2) dAs, (3.2)

θ(s) =

∫
As

ρ(v − v∞)
√

(u2 + v2) dAs. (3.3)

We now take inspiration from the smoke-wire visualizations of Fric & Roshko
(1994), which show that crossflow streaklines approaching the jet remain almost
completely unperturbed until they reach the turbulent vortices within it (in contrast
with streaklines around a cylinder, which diverge well upstream of the cylinder). Thus
we assume that the jet’s perturbation to the crossflow is confined to the characteristic
area As, and that outside this area, u→ 0 and v → v∞. Hence, by drawing the control
volume just outside the jet, flux integrals which would normally extend over infinite
planes (or half-planes) may be restricted to As, because there is no contribution to
the x-momentum or to the deficit of y-momentum outside As. Conservation of mass,
and balance of momentum can then be expressed

ṁ(s) = ṁj + ṁ∞(s), (3.4)
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J(s) = Jj +

∫
An

P (dAn · x̂), (3.5)

θ(s) = θj +

∫
An

P (dAn · ŷ), (3.6)

where P is the pressure, and x̂ and ŷ are unit vectors in the x- and y-directions. The
assumption that u→ 0 and v → v∞ outside As implies that shear stress is zero on the
surface of the control volume, so no terms are included to account for this effect.

It would now be convenient to eliminate the pressure terms from equations (3.4)–
(3.6); fortunately, previous work has provided justification of this when r � 1. Wall
pressure measurements (Fearn & Weston 1975) show a low-pressure region at the
lee of the jet exit, and a smaller high-pressure region on the windward side of it.
The measurements show that a net lift force is exerted on the wall, of the form
cLρ∞v2∞d2φ(r). Here cL is a lift coefficient, and φ(r) is a function which behaves as
φ(r → 0)→ 0, φ(r →∞)→ 1. By integrating the wall pressure coefficient contours for
high-r cases, we estimate that the lift coefficient asymptotically approaches cL ≈ −10.
Therefore, the ratio of the pressure term in (3.5) to Jj (the left-hand side) is ∼ 10/r2,
i.e. the pressure term in (3.5) is negligible for r > 10 (although it should be noted that
wall pressure coefficients were highest near the jet nozzle; hence the assumption that
pressure terms are negligible is less valid near the nozzle). For the crossflow direction
(3.6), the inviscid and viscous analyses for strong jets by Coelho & Hunt (1989)
concluded that jet deflection was entirely governed by entrainment into the jet, not by
pressure effects. Hence we neglect the pressure term in (3.6) as well (again, with the
requirement that r � 1). However, we emphasize that this remains an assumption,
the validity of which remains to be seen in the data.

Dropping the pressure terms, the momentum balances imply that there are two
invariants of the flow: J = Jj (≈ ṁjuj) and θ = θj (≈ ṁjv∞). Since these are
invariants, henceforth the subscripts and dependences on s are dropped. It is noted
that the presence of two invariants usually precludes the existence of a similarity
solution. General scaling principles have been found for shear flows with a single
invariant (Cantwell 1981), but the presence of a second invariant may disrupt the
similarity. It is possible, however, that J dominates the scaling in the near field, and
θ dominates in the far field. This raises the hope that the transverse jet displays
intermediate-asymptotic similarity (Barenblatt 1996), which occurs when there are
multiple relevant length or time scales in a problem, but the scales are disparate over
orders of magnitude. Then, self-similar ‘asymptotic’ solutions (which strictly hold only
when certain scales are infinite or zero) are approximately valid over intermediate
length or time scales.

3.1.1. Assumption of intermediate-asymptotic similarity in the near and far field

Since the jet has a local characteristic width, δ(xc), it can be used to normalize
coordinates in the local cross-section. Local Cartesian coordinates, orthogonal to the
local trajectory, normalized by δ, are then denoted η and γ. Also ρ, u, and v − v∞
profiles in the cross-section are normalized by their centreline values, denoted by
subscript c:

ρ(η, γ, xc) = ρc(xc)f(η, γ; xc), (3.7)

u(η, γ, xc) = uc(xc)g(η, γ; xc), (3.8)

v∞ − v(η, γ, xc) = [v∞ − vc(xc)]h(η, γ; xc), (3.9)
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where the functions f, g and h are normalized profiles in the cross-section. A standard
similarity assumption is that these functions are independent of xc; for the transverse
jet, however, experimental data suggest a slightly more sophisticated approach.

Smith & Mungal (1998) define three regions of the flow: (1) a potential core region,
in the first few diameters from the jet exit (in the Appendix we suggest an analytical
means for predicting the length of this region, based on the work of Coelho & Hunt
(1989)), (2) a near-field region, just beyond the potential core, where the flow is fully
turbulent but has not been deflected appreciably, and (3) a far-field region where
the jet flow has turned almost completely into the crossflow. In the limit of r � 10,
region (1) is similar to an axisymmetric mixing layer, region (2) is similar to a free
jet, and region (3) is similar to the wake of a lifting body. Because the terminology
is confusing – the transverse jet ‘near field’ corresponds to the ‘far field’ of a free
jet – we will refer to the near field as the ‘jet’ region, and the far field as the ‘wake’
or ‘wake-like’ region. It is emphasized, however, that ‘wake region’ does not refer to
the region immediately behind the jet, but the main jet flow far from the jet nozzle,
where wake-like velocity-deficit scaling is observed.

Based on these observations, it seems appropriate to assume that the profile func-
tions f, g and h become steady in each of these regions, i.e. that their dependence
on xc disappears over an intermediate-asymptotic length scale. This allows for the
possibility that the profiles transition from one function in the jet region to another
in the wake region.

For example, consider the normalized density profile, f(η, γ; xc) = ρ(η, γ)/ρc(xc).
At the jet exit (xc = 0), f nearly has a top-hat profile: f = 1 inside the jet, and
f = ρ∞/ρj elsewhere. In the near and far fields, the profile smooths, and eventually
relaxes to a uniform profile, where f ≈ 1 everywhere. In free jets, this evolution
occurs quickly – the difference between the centreline and ambient densities decays by
a factor of two by the end of the potential core region. In short, taking ρc = ρ∞,
f = 1 is a reasonable approximation by the time the near field is reached, unless
density differences are extreme.

Next consider the normalized u profile, g(η, γ; xc) = u(η, γ)/uc(xc). At x = 0 (the jet
exit), g = 1 inside the jet, and g ≈ 0 elsewhere in the cross-section. In the near field,
g approximates a Gaussian distribution. In the far-field, the u profile is complicated,
because the flow in the far-field cross-section resembles that of a counter-rotating
vortex pair. Fortunately, in the far field, uc → 0, and u is no longer the dominant
velocity component. For now, we need only argue that g asymptotically becomes a
self-similar function.

Finally, consider h = (v∞ − v)/(v∞ − vc). At x = 0 (the jet exit), the flow can be
described approximately as v = 0 inside the jet, and v ≈ v∞ elsewhere; therefore h is a
‘top-hat’ function at the jet exit. In the near field and far field, h(η) probably becomes a
doubly peaked function, similar to the far-field concentration cross-sections measured
by Smith & Mungal (1998).

With these justifications, intermediate-asymptotic similarity is assumed, i.e. that f,
g and h asymptotically approach one set of functions (independent of xc) as xc → 0,
and approach another set of functions (independent of xc) as xc → ∞. Furthermore,
we assume that the transition from one set of profiles to another is sufficiently rapid
that, as a reasonable approximation, we may replace the integrals of the profiles with
the limiting constants in each region. With these assumptions, it is now possible to
estimate the behaviour of characteristic velocities in the jet (near-field) and wake
(far-field) limits.

In the near-field region, where the jet has not been deflected appreciably, the
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velocity is dominated by the u-component. Therefore
√
u2 + v2 ≈ uc(x)g(η, γ), and the

conservation equations (3.4)–(3.6) are simplified in the near field:

ṁj + ṁ∞ = ṁ ≈ Imnρcucδ2, (3.10)

J ≈ IJnρcu2
cδ

2, (3.11)

θ ≈ Iθnρcδ2[v∞ − vc]uc. (3.12)

In the far-field ‘wake’ region, where the jet has completed most of the turning, u→ 0,
v → v∞, and the conservation equations (3.4)–(3.6) are again simplified:

ṁj + ṁ∞ = ṁ ≈ Imfρcv∞δ2, (3.13)

J ≈ IJfρcv∞ucδ2, (3.14)

θ ≈ Iθfρcv∞[v∞ − vc]δ2, (3.15)

where the constants I represent the asymptotic values of integrals. The first subscript
on the I (namely m, J, θ) corresponds to the integral quantity (i.e. for mass, momentum,
or momentum deficit) and the second subscript corresponds to the near- or far-field
region of the jet. In the near field,

Imn ≡
∫
A

fg dη dγ, IJn ≡
∫
A

fg2 dη dγ, Iθn ≡
∫
A

fgh dη dγ, (3.16)

and in the far field,

Imf ≡
∫
A

f dη dγ, IJf ≡
∫
A

fg dη dγ, Iθf ≡
∫
A

fh dη dγ. (3.17)

Profiles measured in previous work (Fric & Roshko 1994; Kuzo 1995) suggest that
the integrals vary only by factors of two or so as they evolve from near-field to far-
field values. For example, for a Gaussian profile of g(η, γ), the integral IJn evaluates
to half the value if g = 1 across the jet width (keeping mass and momentum flux
the same for the profile). This factor of two is small compared with the power-law
relationships between uc, vc − v∞ and δ that the conservation equations (3.10)–(3.15)
imply.

3.2. Scaling laws

3.2.1. Velocity and jet width: jet region

If a self-similar (intermediate-asymptotic) jet region exists, J is the defining invariant
and v∞ is unimportant. From dimensional analysis, the functional dependence uc =
φ(J, x, ρ∞, ν) becomes Π = Φ(Π1), where

Π =
ρ

1/2∞ ucx

J1/2
∼ uc

uj

x

d∗ , (3.18)

Π1 =
J1/2

ρ
1/2∞ ν

= Re, (3.19)

and d∗ = dj(ρj/ρ∞)1/2. If we invoke Reynolds number (Re) invariance, the functional
dependence reduces to Π = constant (some Re dependence is suggested by Yuan,
Street & Ferziger (1999); we are assuming a much stronger dependence on r). We have
also observed that J is constant, and hence have two equations for two unknowns
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(uc and δ). Substituting for uc with the above expression for Π , into (3.11), letting
ρc → ρ∞, gives

J = IJnρcΠ
2d∗2u2

j

(
δ

x

)2

. (3.20)

Since everything in this equation is a known constant for a given jet save δ/x, δ/x
must also be a constant. Therefore,

δ ∼ x, (3.21)

uc ∼ J1/2ρ−1/2
∞ x−1. (3.22)

These results agree with free-jet scaling, as expected. The dependence of vc on x is de-
rived by considering the momentum deficit in the near field, (3.12). The relationship is

v∞ − vc ∼ θ

ρ
1/2∞ J1/2

x−1. (3.23)

3.2.2. Velocity and jet width: wake-like region

In the wake-like region, the characteristic velocity deficit v∞−vc is of interest. Adding
v∞ to the parameter list, the functional dependence is v∞ − vc = φ(J, x, ρ∞, ν, v∞).
Dimensional analysis gives Π = Φ(Π1, Π2) where

Π =
v∞ − vc
v∞

, (3.24)

Π1 =
xρ

1/2∞ v∞
J1/2

∼ x

rd
, (3.25)

Π2 =
J1/2

ρ
1/2∞ ν

= Re. (3.26)

This time, the assumption of Reynolds number invariance leads to Π = Φ(Π1). From
(3.15), letting ρc → ρ∞ and vc → v∞, we obtain

θ = Iθfρcv∞(v∞ − vc)δ2 = IθfJΠΠ
2
1

δ2

x2
. (3.27)

At this point it is necessary to make an assumption: that δ/x and the product
ΠΠ2

1 are constants. The assumption is motivated by the scaling of three-dimensional
wakes (Cantwell 1981), but requires experimental verification. In the meantime, this
assumption leads to scaling laws for characteristic length and velocity deficit:

δ ∼ x, (3.28)

v∞ − vc ∼ J

ρ∞v∞
x−2. (3.29)

Using (3.14) and substituting for δ, and absorbing the integral into a constant, gives

uc(x) ∼ J

ρ∞v∞
x−2. (3.30)

If the data indeed verify that δ/x = constant in both the far field and near field,
it would indicate a sort of degeneracy in the similarity. However, it is emphasized
that the constants could be different in the near and far fields as a consequence
of different normalized velocity profiles (resulting from different flow structure), as
described previously.
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3.2.3. Mass flux

The scaling laws for velocity and jet width can be used to derive near- and far-field
scaling laws for mass flux, so that constants of proportionality can be combined into
a near- and far-field entrainment coefficient. This will also allow comparison with
experimental measurements, and an easy way to check for consistency between the
coefficients for scalar/velocity and the observed profiles.

In the near field, ṁ ∼ ρcucδ
2; substituting the near-field scaling laws (3.21) and

(3.22) for δ and uc, and assuming ρc ≈ ρ∞, leads to ṁ(x) ∼ ρ1/2∞ J1/2x. (The assumption
that ρc ≈ ρ∞, of course, is not very good until at least 10 diameters from the jet
nozzle, depending on the density ratio; however, we are restricting ourselves to the
region x/d > 10 for similarity purposes anyway.) If the flow from the jet exit is
perfectly uniform, J = ṁjuj , and ṁj = ρjuj

1
4
πd2, so

ṁ(x)

ṁj
= cej

(
ρ∞
ρj

)1/2 (x
d

)
, (3.31)

where cej is the entrainment coefficient. The subscript e is used to denote entrainment,
and the subscript j is used to denote that the coefficient holds in the jet (near-field)
region of the flow. Equation (3.31) was confirmed by Ricou & Spalding (1961) for
free jets, with cej = 0.32.

In the far field, uc → 0 and vc → v∞, hence the mass flux becomes ṁ(x) ∼ ρcvcδ2 ∼
ρ∞v∞x2. Assuming an ideal jet exit velocity profile as before, the scaling law for δ
gives

ṁ(x)

ṁj
= cewr

(
ρ∞
ρj

)1/2 ( x
rd

)2

, (3.32)

where cew is the entrainment coefficient in the wake-like region. Comparison of near-
and far-field entrainment rates leads to a definition of a dividing line between jet and
wake flow regimes. The jet entrainment law (3.31) predicts more rapid entrainment
than the wake-like entrainment law (3.32) until x/rd = cej/cew , suggesting that the
transition point from jet to wake-like behaviour should be at a critical value of x/rd.
In § 4.1, using scalar concentration data, we will demonstrate that this type of scaling
transition indeed occurs for jets with r > 20.

Returning to the reduced balance equations (3.10)–(3.15), scaling laws for the
centreline velocities can be written in terms of the entrainment coefficients, if we also
introduce profile factors which relate the centreline values to the mass-flux averaged
values. Under the ideal nozzle flow assumption, J = ṁjuj and θ = ṁjv∞; therefore

uc

uj
= cu

ṁj

ṁ
,

v∞ − vc
v∞

= cv
ṁj

ṁ
, (3.33)

where cu and cv are profile coefficients. Again, it is emphasized that these may have
different asymptotic values in the near and far fields, because of the differences in
asymptotic profiles f, g and h in these regions.

3.2.4. Trajectory

Based on these scaling laws, simple analytic solutions can be obtained for the
trajectory in the jet and wake-like regions. The trajectory can be defined as the mean
centre streamline, such that dx/dy = uc/vc. Equations (3.22) and (3.30) provide uc in
the near and far fields, respectively, and it is assumed that v → v∞. Ignoring the profile
coefficients (assuming that the mass-flux averaged velocities, not the peak velocities,
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determine the trajectory), gives the trajectories

xc

rd
=

(
2

cej

yc

rd

)1/2

, (3.34)

xc

rd
=

(
3

cew

yc

rd

)1/3

(3.35)

for the jet and wake-like regions, respectively. From these equations it is clear that
the entrainment coefficient is directly related to the jet trajectory. In other words,
neglecting pressure forces on the jet (they are O(r−2) compared to momentum flux
terms), implies that the jet is deflected entirely due to entrainment of crossflow fluid.
Therefore, the rate of entrainment can be deduced from the rate of turning. This
semi-empirical approach was successfully applied to predicting scalar concentration
and velocity in previous work (Hasselbrink & Mungal 1996), but the results were
limited to the far field.

The form of the far-field trajectory (3.35) was found by Margason (1968), as
x/rd = 1.6(y/rd)1/3. A very close approximation to this was also found by Pratte &
Baines (1967): x/rd = 2.05(y/rd)0.28. In general, experimental results show significant
scatter, particularly in the leading coefficient, as shown in the trajectory data compiled
by Margason (1993). As discussed in the introduction, this is due to at least five effects:

(i) the trajectories of maximum flow speed, maximum scalar concentration, and
the centre streamline are different (Kamotani & Greber 1972);

(ii) approximations inherent in flow visualization;
(iii) different forms of assumed trajectory correlations;
(iv) different ranges of r which were correlated (we expect a correlation of the

form given in (3.35) only for r � 1);
(v) differing methods for calculating r, such as using the average or peak velocity

at the jet exit rather than the momentum average.
Margason’s values are used in the remaining discussion, i.e. cew = 0.73. With the

trajectory given in (3.35), and again assuming ideal flow from the nozzle, the mass
flux in the far field can also be written in terms of y/rd, the more natural far-field
spatial variable:

ṁ

ṁj
= (9cew)1/3r

(
ρ∞
ρj

)1/2 ( y
rd

)2/3

. (3.36)

This result is exactly the form obtained by Broadwell & Breidenthal (1984).

3.2.5. Scalar concentration

A scaling law for concentration can be derived by considering the conservation of
scalar. Presuming normalized concentration, ξ, is unity at the jet exit and zero in the
crossflow, the conservation equation is

ṁj =

∫
As

ρ(u2 + v2)1/2ξ dAs. (3.37)

By simplifying the integral to a normalized profile, and making the same near-field
and far-field simplifications as in previous sections, the equation can be reduced to

ξc = cξ
ṁj

ṁ
, (3.38)
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where ξc denotes the centreline concentration, and cξ is a profile shape factor. Using
the near- and far-field scaling laws for mass entrainment,

ξc =
cξ

cej

(
ρ∞
ρj

)1/2 (x
d

)−1

, (3.39)

in the near field. Note that cξ = 1.6 in free jets, since cξ/cej = 5.0, and cej = 0.32
(Chen & Rodi 1980). In the far field,

ξc =
cξ

cew

1

r

(
ρj

ρ∞

)1/2 ( x
rd

)−2

=
cξ

(9cew)1/3

1

r

(
ρj

ρ∞

)1/2 ( y
rd

)−2/3

. (3.40)

Assuming that cξ is still 1.6, the leading coefficient evaluates to 0.85. Because profiles
are expected to change as the asymptotic profiles change, this is not necessarily a
good assumption; however, the experimental data will show that this gives fortuitously
accurate results.

3.3. Scaling law summary

The scaling laws can be condensed by employing near- and far-field entrainment
coefficients, cej and cew , and profile factors which relate centreline values to flux-
averaged values. Assuming a uniform jet-exit profile also allows J and θ to be
replaced by the more intuitive quantities of jet exit velocity and jet diameter. In the
near field, in terms of xc:

uc

uj
=
cuj

cej

(
ρj

ρ∞

)1/2 (xc
d

)−1

, (3.41)

v∞ − vc
v∞

=
cvj

cej

(
ρj

ρ∞

)1/2 (xc
d

)−1

, (3.42)

ξc =
cξ

cej

(
ρ∞
ρj

)1/2 (xc
d

)−1

. (3.43)

In the far field, making use of y/rd as the preferred distance metric:

uc

uj
=

cuw

(9cew)1/3

1

r

(
ρj

ρ∞

)1/2 (yc
rd

)−2/3

, (3.44)

v∞ − vc
v∞

=
cvw

(9cew)1/3

1

r

(
ρj

ρ∞

)1/2 (yc
rd

)−2/3

, (3.45)

ξc =
cξ

(9cew)1/3

1

r

(
ρj

ρ∞

)1/2 (yc
rd

)−2/3

. (3.46)

In each region the scaling laws are the same except for the leading constants, which
arise from profile differences. The subscripts on the profile constants refer to the
quantity (u, v, or ξ) and the region of the jet (near or far field), respectively.

Approximate values for many of the profile constants can be estimated. In free jets,
the leading constant in the scaling law given by (3.41) is 6.2 (Chen & Rodi 1980);
since cej = 0.32 (Ricou & Spalding 1961), it follows that cuj ≈ 2. This value can also
be derived by comparing the centreline velocities of a top-hat profile with a Gaussian
profile, and assuming they have the same mass and momentum flux. Similar values of
cvw and cuw are expected, since these are peaked profiles; cvj , however, should reflect
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the relatively flat profiles of v in the near field, and should therefore be near unity.
Other coefficients can be deduced from data. As will be shown in the following section,
the far-field entrainment coefficient cew ≈ 0.73, although uncertainty in this number
is somewhat large, because it is based on indirect measures such as jet trajectory and
centreline velocity. The scalar profile coefficient cξ ≈ 1.6 in both the near and far
fields.

4. Comparison to data
4.1. Scalar concentration

For comparison to scalar concentration data, we have revisited the data of Smith &
Mungal (1998), who have performed an exhaustive set of concentration measurements.
Their experiments measured the concentration field in various planes through a nearly
constant-density transverse jet at r = 5, 10, 15, 20 and 25 using planar laser-induced
fluorescence (PLIF) of acetone. They also acquired a small set of concentration images
at r = 40, 80 and 200. The jet issues from contoured nozzles of various diameters, flush
with the wall of a 50×50 cm wind tunnel with uniform crossflow velocity of 1.25 m s−1.
A 300 µm thick sheet of laser light is used to induce fluorescence of acetone vapour,
initially at about 10% concentration in the jet. The fluorescence signal, captured
on a cooled 512 × 512 pixel CCD camera, is linearly proportional to the acetone
concentration, after correction for laser sheet intensity distribution, background signal,
and the absorption of laser energy by the acetone. Further experimental details are
given in Smith (1996) and Smith & Mungal (1998).

4.1.1. Scalar: jet region

Ensemble averages of instantaneous concentration fields of three jets with r = 40,
80, and 200 are shown on figure 3(a). Crossflow is from bottom to top, and the jet
issues from left to right with jet exit Reynolds numbers of 8300, 17 000 and 33 000,
respectively. Nozzle diameters are 2.5, 2.5 and 2.0 mm, respectively, and the viewing
region is approximately 230 mm tall by 250 mm wide. These images were obtained as
an adjunct experiment to more exhaustive imaging at lower r, and so the laser sheet
and camera positions were kept fixed, despite sub-optimal windowing at these values
of r. Only 10–20 images were acquired for the ensemble average, yet the smoothness
of the profiles suggests converged mean values; this is probably a result of spatial
averaging in each pixel.

The data clearly show a free-jet scaling region in the transverse jet. First of all, in all
three cases there is a region near the nozzle where the jet appears to spread linearly,
although the overall jet is also slightly deflected. Note that a logarithmic look-up
table has been employed for the image display, which accentuates regions of low
concentration, and overemphasizes the skewness and distortion in the concentration
profile. Concentration profiles (taken through vertical slices through the images)
are shown on figure 3(b) for each case. The vertical distance is normalized by the
horizontal distance from the nozzle, and scalar concentration is normalized by x/d.
Without crossflow, the profiles would collapse to a single curve in this coordinate
system; this is closely realized for all the data in the r = 200 case, except for some
horizontal shifting of the profiles. Figure 3(c) shows improvement in data collapse,
afforded by shifting the profiles by the jet centreline displacement in y, predicted by
the near-field trajectory (equation (3.34) gives yc/xc = 0.16xc/rd). The collapse of the
r = 200 data is good for all available data (as far as 72 diameters from the nozzle
exit). In the r = 80 case, noticeable disagreement in the scaling for the peak value
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Figure 3. Jet-like behaviour in the concentration field of transverse jets. (a) Average concentration
images at r = 200, r = 80, r = 40, data from Smith (1996). (b) Concentration profiles taken along
vertical cuts through the images, cast into jet-similarity coordinates. (c) Concentration profiles,
shifted horizontally in order to centre profiles onto the location of jet centreline. Centreline is
predicted by the near-field trajectory xc/rd = (2/cej)

1/2(yc/rd)
1/2; with cej = 0.32, the shift is

yc/xc = 0.16x/rd. Free-jet profiles would collapse to a single Gaussian-like curve with maximum
value near 5.0. In the transverse jet, although the profiles translate in the crossflow direction, they
stay relatively symmetric and the maximum stays near 5.0 for all data in the r = 200 case, for
r = 80 when x/d < 40, and for r = 40 when x/d < 20.
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Figure 4. Centreline scalar concentration transition from jet-like to wake-like behaviour. At r > 20,
a region exists in the near field where the free-jet scaling law is obeyed. At a point near xc/d = (3/4)r,
a transition to a wake-like scaling law, equation (3.40), is obeyed.

of ξ does not occur until x/d > 40; in the r = 40 case, the peak value obeys the jet
scaling law until x/d > 33.

Another test for jet similarity is the scaling of the centreline concentration decay.
Figure 4 shows peak concentration as a function of vertical distance from the jet
nozzle for all three cases, plus additional data for the r = 10 and r = 20 cases.
The data are compared with the expression given by Chen & Rodi (1980) for free
jets, ξ = 5(x/d)−1. The data for r = 40, 80 and 200 show good agreement until
x/d ≈ (3/4)r. It thus appears that for high-r jets, free-jet scaling applies over an
intermediate length scale. Based on the analysis and the experimental data shown
above, it appears that this length scale is defined as x/rd < 3/4. This region also has
a lower bound, because jet similarity is not expected until x/d > 10, well away from
the potential core. Therefore the jet-like intermediate region is not expected to appear
unless r > 20.

4.1.2. Scalar: wake-like region

Figure 4 also shows the predicted concentrations using the scaling law in the wake-
like region, equation (3.40) with cew = 0.73, and cξ = 1.6. The agreement appears to
be very good, except for the r = 10 case, but recall that the analysis assumed r � 1.
These data suggest that r > 20 is required for a jet scaling region to appear in the
concentration field.

However, the scaling laws appear to work somewhat better for r < 20 jets in the
far field. Figure 5 compares the scaling law in y/rd coordinates to the results of Smith
& Mungal (1998) at r = 5, 10, 15, 20 and 25. The worst deviation is for r = 10, which
has an anomalous dip in the centreline concentration data near y/rd = 1.7, where
the concentration falls 31% below the predicted value. However, images from Smith
& Mungal (1998) show that centreline concentration in the far field can be 40% less
than the peak value, which is found off-centreline, in the CVP cores. The present
theory makes no attempt to account for details of the concentration distribution in
the cross-section. However, the collapse of the data suggests that concentration is
properly scaled with r – in the far field for r > 10 and y/rd > 2, deviation is under
22%.
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Figure 5. Scalar concentration collapsed with r, versus y/rd, compared with far-field (wake-like)
scaling law. Data are from Smith & Mungal (1998).
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Figure 6. Comparison of existing high-r velocity data with calculations from far-field scaling laws.

4.2. Velocity

Figure 6 compares the centreline velocity magnitude prediction of the analysis with
velocity data obtained from Patrick (1967) and Keffer & Baines (1963). The data
from these experiments were originally plotted as a function of s/d, so we calculate s
by numerically integrating:

s =

∫ s

0

ds =

∫ x

0

[(
dx2

dy2

)
+ 1

]1/2

dy, (4.1)

where the trajectory is as given in (3.35). Also, Patrick’s velocity data were normalized
as u∗ = (|uc| − v∞)/(uj − v∞).

Due to the generally sparse velocity data in the literature for high-r jets, an extensive
set of particle image velocimetry (PIV) data were obtained in our laboratory for r = 10
and r = 20. We defer more complete description of the experiment until Part 2 of this
paper (Hasselbrink & Mungal 2001), but for the purposes of validating the scaling
laws given here, we present the results in figure 7. The plots compare profiles (obtained
in the (x, y)-plane through the centre of the jet) of mean v velocity (top) and RMS
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Figure 7. Jet cases: velocity (top) and RMS fluctuation (bottom) profiles in far-field similarity
coordinates. (a) r = 10 jet, (b) r = 21 jet.

fluctuations (bottom), for r = 10 (a) and r = 21 (b) jets, in similarity coordinates. The
spatial coordinate x/rd has been scaled by (y/rd)1/3, as suggested by equation (3.35).
The mean and RMS velocity profiles (top) have been scaled as suggested by equation
(3.45) (the scaling of v′rms by uj in the RMS profiles is not necessarily obvious, but is
discussed in Part 2). As found in the concentration data, self-similar collapse is less
perfect for r = 10 as suggested in § 3; however, the collapse of the data is good for
r = 21 for both the mean and RMS profiles.

5. Implications for the counter-rotating vortex pair
5.1. Vorticity in the vortex pair

The structure of the far-field vorticity field is often depicted as a counter-rotating
vortex pair (CVP) with compact cores, as shown in figure 1. This concept of the CVP,
where the vorticity is aligned with the jet axis, is based on the appearance of a vortex-
pair-like distribution of mean vorticity, velocity, and scalar in the jet cross-section.
However, a different picture evolves from the consideration of fundamental equations
of motion, coupled with the scaling laws.

From Batchelor (1967, equation 7.2.5), a body of fluid has linear momentum, P ,
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Figure 9. Vorticity field structure implied by the CVP model.

which is proportional to the first moment of the vorticity field, ω:

P = 1
2
ρ

∫
V

x× ω dV , (5.1)

where x is a position vector.
If the CVP is idealized as a pair of potential vortices, the CVP is completely defined

by its circulation Γ and spacing δcvp, as shown in figure 8. Equation (5.1) simplifies
to (Batchelor 1967)

dP = ρΓδcvp dln̂ (5.2)

where dl is a differential distance along the vortex line, and n̂ is a unit vector in the
direction of propagation. In the transverse jet, this vortex impulse arises from the
momentum excess in the x-direction and deficit in the y-direction. In a time dt, a
differential amount of x-momentum and y-momentum deficit are released from the
jet exit (again neglecting pressure effects, requiring r � 1):

dPx = ṁjuj dt, (5.3)

dPy = ṁjv∞ dt. (5.4)

Therefore dPx/dPy = uj/v∞ is constant, and hence the impulse vector P has a
constant angle of inclination to the crossflow throughout the jet trajectory. This leads
to a surprising conclusion: the idealized vortex pair has a constant angle of inclination
throughout the jet: αcvp = arctan(v∞/uj).
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Figure 10. Vortex lines in the transverse jet, from Sykes et al. (1986). Crossflow is from right to
left (axes are rotated 90◦ clockwise from the present work). (a)–(c), r = 2, 4 and 8. Jet exit centre is
at (0,0,0) in the coordinate system shown, and axes are normalized by jet diameter. Reprinted with
permission from Cambridge University Press.

The structure of the vorticity field implied by this finding is incompatible with the
conventional concept of the CVP vortex lines being parallel with the jet trajectory
(figure 1). A simplified conceptual view that is consistent with this result is presented in
figure 9, which also attempts to account for the fact that vortex lines cannot terminate
within the fluid. This structure is radically different from the typical portrayal of the
CVP in the literature. Of course, this structure is correct only to leading order:
the layered structure shown implies that vorticity must be distributed throughout
each cross-section, which is inconsistent with the assumption of compact vorticity
(e.g. an ideal vortex pair). Furthermore, this analysis only considers the time-average
field. Experimental work by Kelso et al. (1996) and simulations by Yuan et al.
(1999) indicates that the instantaneous vorticity field structure is significantly more
complicated, involving bent and distorted vortex ‘rings’ which interconnect with each
other.
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The computational results of Sykes et al. (1986) demonstrate a more realistic
structure which is consistent with this analysis, shown in their figure 12, reproduced
in figure 10. In their simulation (crossflow goes right to left, jet initially issuing
upwards), vortex lines form slightly curved rings starting at the front of the jet which
incline into the crosswind. As the rings move upwards, they also stretch downstream,
becoming elongated. However, rings within a single jet all have a similar inclination
angle to the crossflow (except, perhaps, very close to the nozzle). For their r = 2 case,
these rings are inclined at approximately 30◦ in the far field, as expected, and about
half as much for r = 4. At r = 8, the rings stay almost totally flat as they advect
into the crossflow stream. The predictions are also consistent with the experiment of
Chang & Vakili (1995), who injected single vortex rings into a crossflow and found
that the rings tilted towards the crosswind in this manner. They also found that
rings formed at lower nozzle velocities tilted more into the crosswind. Finally, flow
visualization of forced jets at moderate Re (Eroglu & Breidenthal 1991) clearly shows
vortex rings which tilt into the crosswind, rather than away from it. These and other
experiments (Kelso et al. 1996) suggest that individual vortex rings do not simply tilt
as though they were solid disks, but that their leading edges are bent slightly towards
the wall, and their trailing edges are bent away from it. As this evolves, the trailing
edge of one ring can be entrained upwards into its predecessor.

5.2. Circulation

The measured rate of circulation loss in the CVP has previously been attributed to
viscous diffusion, which is greatly amplified by turbulent transport and the generation
of large vorticity gradients. However, in our proposed strucure of the mean vorticity
field in the time-averaged transverse jet, the measured circulation in the half-plane does
not correspond to a single vortex tube. Rather, the half-plane circulation is measured
across an ensemble of vortex lines, which changes depending on the measurement
plane chosen. Therefore, measured circulation is not conserved in the inviscid limit,
and its rate of decay is not necessarily due to the rate of vorticity dissipation by
turbulent transport.

Nonetheless, the half-plane cross-section circulation has been measured in previous
work. Likewise, a scaling law for circulation can be derived from the previous
considerations. The x-component of vortex impulse flux is equal to the jet momentum
flux:

dPx
dt

=
dP

dl
cos(α)

dl

ds

ds

dt
= J; (5.5)

dP/dl can be obtained from (5.2), and ds/dt = |u|. In the far field, v → v∞, and
dl/ds → 1/ cos(α). Making these substitutions, taking ρ → ρ∞, and assuming ideal
flow at the nozzle exit (J = u2

j d
2π/4) gives

Γ

ujd

δcvp

rd
=
π

4

(
ρj

ρ∞

)1/2

. (5.6)

The similarity analysis for the entrainment, presented earlier, implies that δcvp ∼ x.
Kuzo (1995) has recently obtained PIV vector fields in the cross-section of the CVP,
from eleven contour maps for r = 5, 10 and 20 (his figure 20), we have measured
the distance between vorticity peaks to be between 0.37x and 0.43x. Taking δ = 0.4x,
we have δcvp/rd = 0.4x/rd. Since Kuzo’s circulation data are plotted versus y/rd,
we transform coordinates using the far-field trajectory x/rd = 1.6(y/rd)1/3, finally
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Figure 11. CVP circulation versus y/rd; data of Kuzo (1995), compared with model predictions.

arriving at a circulation prediction for the far field:

Γ

ujd
=

π

2.56

(
ρj

ρ∞

)1/2 ( y
rd

)−1/3

. (5.7)

Presented in figure 11 is the predicted vortex circulation compared with Kuzo’s results
for r = 5, 10 and 20 as functions of y/rd. The agreement is quite good, considering
the approximations involved. It should also be noted that the scalings Γ/ujd and
x/rd collapse the data reasonably well. The quantitative agreement achieved here
is quite similar to that obtained by Karagozian (1986), although the present work
takes a considerably different approach. The results also agree with the predictions
of Durando (1971) and Broadwell & Breidenthal (1984) that Γ ∼ y−1/3.

It is emphasized again that this rate of decay of circulation is not necessarily due to
turbulent transport followed by viscous destruction of vorticity, because the measured
circulation is not circulation within a single vortex tube. The decay of measured
circulation may also result from the spatial integral being taken across a decreasing
number of time-averaged vortices.

6. Conclusions
The virtue of similarity analysis is its simplicity. With the entrainment given by

equations (3.31) and (3.36), back-of-the-envelope estimation and scaling are possible
for far-field transverse jet mean properties.

Besides the simplicity of these scaling laws, there are two particularly interesting
results of the analytical work. First of all, in both near and far fields, δ ∼ x (although
the proportionality constant may be different in these two regions). The resulting
trajectory, x/rd ∼ (y/rd)1/3, implies that δ ∼ y1/3, which is the classical scaling for
axisymmetric wakes. Secondly, the equivalence of the ‘vortex pair’ impulse and the
first moment of vorticity directly implies that average vorticity is aligned at a constant
angle of inclination to the crossflow. This leads to a vorticity field structure which is
quite different from what has typically been assumed in previous modelling efforts.

Various effects have been neglected in the present analysis, which should be included
before using the scaling laws for direct engineering application. First of all, we have
assumed that pressure terms in the momentum conservation equation are negligible,
equivalently that r2 � 1. Sensitivity of the entrainment estimate to this neglected
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effect leads to noticeable but not overwhelming errors. For example, if kept in the
analysis, the pressure term affects the value of the leading coefficient for the trajectory
by a factor (1 − cL/r2)1/3. Given our estimate that cL = 10, we expect the trajectory
to be about 25% lower for r = 5 than for large r, in rd coordinates; in fact, this
behaviour has been observed in the data of Smith & Mungal (1998). Secondly, in
the case of jets issuing from a wall, ‘image’ vortices would be expected to lower the
trajectory due to their induced velocity. Again, this effect is expected to be most
noticeable at low r. We have refrained from attempting to include these effects, first
because similarity in the equations requires the elimination of pressure terms, and
secondly, for the sake of clarity. Other confusing factors, such as the virtual origin
of the jet, interaction between the jet and the boundary layer, and detailed velocity
profile considerations, have likewise been neglected.

Neglecting the crossflow in the near field may seem ignorant in the light of
the complicated streamline patterns observed around the jet near field by previous
investigators (Coelho & Hunt 1989; Fric & Roshko 1994; Kelso et al. 1996). However,
the complex streamline patterns noted previously take place in regions where velocity
magnitudes are comparatively low. The present approach demonstrates that, for small
x/rd, the axial jet velocity is r times larger, and is changing r times faster, than the
crossflow component of velocity. Hence the crossflow component can be ignored in
this region of the flow.

Remaining issues to be discussed in Part 2 of this paper regarding transverse jet
scaling laws include:

(a) verification of the near-field/far-field scaling behaviour in the velocity field;
(b) investigation of the scaling of turbulence statistics;
(c) extending the scaling laws to the case of momentum-dominated diffusion flames.

On this last topic, we are motivated by the results of Gollahallii, Brzustowski &
Sullivan (1975), who studied a non-buoyant high-Re propane diffusion flame in a
crossflow. Their trajectory data show good agreement to x/rd = 1.8(y/rd)1/3. This
result is close enough to the present results that it seems possible to extend the
analysis to burning jets by using additional conservation laws.

7. A closing remark
Similarity solutions have been classified by Barenblatt & Zel’dovich (1972) and

Barenblatt (1996). They state that for a functional dependence Π = Φ(Π1, Π2), there
are three possibilities:

(a) As Π2 → ∞, Φ approaches a non-zero finite value. In this case, Π2 becomes
immaterial, and the function Φ can be replaced with its limiting value. This is called
complete similarity, or similarity of the first kind in the parameter Π2. This behaviour
is the type of Reynolds number similarity often assumed in analysis of turbulent flow,
including von Kármán’s arguments which lead to the logarithmic ‘law of the wall’.

(b) As Π2 → ∞, Φ asymptotically approaches a power-law dependence on the
parameter Π2, taking on the property of generalized homogeneity:

Φ = Πα1

2 Φ1(Π1Π
α2

2 ). (7.1)

This is called incomplete similarity, or similarity of the second kind in the parameter Π2.
This is the type of similarity recently proposed by Barenblatt (1993) and Barenblatt
& Prostokishin (1993) as an alternative to the logarithmic ‘law of the wall’.

(c) Neither a or b holds, and there is no self-similarity.
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Figure 12. Prediction of potential core length compared with data from Pratte & Baines (1967)
and Smith & Mungal (1998).

Case b is a more difficult situation than case a, because of the additional task of
determining α1 and α2. In the present work, we have assumed complete similarity in
the wake-scaling region of the jet, and shown good agreement to data when r � 1.
However, we have also shown that agreement is less perfect when r is smaller. Thus we
have not ruled out that the similarity is not of the second kind. To prove this, however,
would require the introduction of the exponents α1 and α2, which would probably
have to be experimentally determined. Although this approach might provide a more
unified theory (applicable to a much wider range of r), pursuing this possibility is
beyond the scope of the present work.

The authors would like to acknowledge J. E. Broadwell for many inspirational
discussions, and S. H. Smith for providing the scalar imaging data. This work was
supported by the Gas Research Institute, R. V. Serauskas, Technical Monitor.

Appendix. A simple prediction of the length of the potential core
A simple method to estimate the length of the potential core of transverse jets can

be derived based on the entraining vortex sheet model of Coelho & Hunt (1989). This
length is a lower bound to the distance from the jet nozzle over which any type of
similarity might be expected.

Coelho & Hunt (1989) derived an expression for the perturbation of an initially
annular vortex sheet issuing from a jet nozzle into a crosswind. The vortex sheet is
superposed with a sink sheet, whose strength is proportional to the local slip velocity
across the sheet, in order to mimic near-field entrainment. The perturbation of the
sheet from an initially perfect circle, normalized by jet diameter, is given in terms of
azimuthal angle θ (measured from the leading edge of the nozzle), the entrainment
coefficient ε, axial distance from the nozzle, s, and the crossflow-to-jet velocity ratio,
λ = v∞/uj = 1

r
(ρj/ρ∞)1/2:

R′ = sε+ (1 + k′)s2 cos θελ+ O(λ2, ε2, λ2, ελ2 . . .). (A 1)

Here k′ is a constant which is presumed to be small; all distances are normalized by
jet diameter in this expression. Supposing that the potential core is ended when the
maximum (θ = 0 or π) perturbation reaches a critical value: we have

soε+ s2oελ = ζcrit, (A 2)
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where ζcrit is a constant, and so denotes the end of the potential core. For free jets,
the potential core is approximately six diameters in length. Hence ζcrit/ε = 6, and so

so =
−1± (1 + 24λ)1/2

2λ
. (A 3)

A comparison of this expression with the velocity results of Pratte & Baines (1967)
is shown in figure 12. Agreement is good for a large range of velocity ratios and jet
diameters. The scalar concentration data of Smith & Mungal (1998), however, shows
potential cores which are somewhat shorter.
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